

What are the odds? Sensory game features, decision making and arousal

Mariya V. Cherkasova

University of British Columbia

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory Game Features

THE UNIVERSITY OF BRITISH COLUMBIA

Harmless Fun or Addiction by Design?

Korn & Shaffer 1999

THE UNIVERSITY OF BRITISH COLUMBIA

The Machine Zone

"It's like being in the eye of a storm, is how I'd describe it. Your vision is clear on the machine in front of you but the whole world is spinning around you, and you can't really hear anything. You aren't really there— you're with the machine and that's all you're with."

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory reward features

PG prevalence Persistence Bet size

THE UNIVERSITY OF BRITISH COLUMBIA

Structural game characteristics

Multiple Lines

Losses Disguised as Wins

Novice players

Dixon et al 2010

Jensen et al 2013

Structural game characteristics

Near misses

- Experienced as frustrating
- Increase urge to play and gambling persistence
- Lead to overestimate frequency of winning
- Activate the reward circuitry
- Increase arousal

Reviewed in Barton et al, J Gambl Stud, 2017

Stop buttons

- Foster illusion of control in novice players (Ladouceur & Sevigny, 2005)
- 13.6 % of gamblers held erroneous believes despite casino signage (Dixon et al 2018)
- Associated with gambling persistence (Ladouceur & Sevigny, 2005)

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory reward features

- Sensory features are attractive to gamblers (Griffiths 1990; Dixon et al 2010, Livingstone & Woolley 2008; Loba et al 2001)
 - particularly to pathological gamblers
 - some gamblers dislike the sounds (*Livingstone & Woolley 2008*)

Slots sounds are arousing (Dixon et al 2014)

Slots sounds help disguise losses as wins (Dixon et al 2010, 2014, 2015) BC

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory reward features

THE UNIVERSITY OF BRITISH COLUMBIA

Risky decision making in the lab: the Iowa Gambling Task

- Decision making deficits in addictions, including gambling (e.g. Kovacs et al 2017, Bechara et al 2001)
- Decision making "recovers" along similar time frame as craving diminishes (e.g. Wang et al. 2013)
- Risky decision making is particularly good predictor of treatment failure (e.g. Stevens et al. 2013)

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & decision making in rodents

Dr. Catharine A Winstanley

CRAIG SWANSON @ WWW. PERSPICUITY, COM

UBC

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

The rodent gambling task

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory cues promote risky choice on the rGT

Option

Barrus & Winstranley, JN 2016

BE

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & decision making in humans

Studies in healthy human volunteers

A: Iowa Gambling Task

B: Vancouver Gambling Task

Behavioural economic two-choice lottery task; Sharp et al, 2012, 2013

THE UNIVERSITY OF BRITISH COLUMBIA

Vancouver Gambling Task (VGT)

5

2

THE UNIVERSITY OF BRITISH COLUMBIA

Vancouver Gambling Task (VGT)

Total: 5

You won!

THE UNIVERSITY OF BRITISH COLUMBIA

Vancouver Gambling Task (VGT)

BC

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Vancouver Gambling Task (VGT)

THE UNIVERSITY OF BRITISH COLUMBIA

Vancouver Gambling Task (VGT)

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & decision making: IGT

Between-subjects design, n=131

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & decision making: VGT

Study 1: between-subject n=131

Rate of chooisng the high-probability 1.0 More risk-averse ш S (safer option) +/-0 .5 Sensory features ensory features More risk-seeking 0.0 0.0 0.5 -1.0 -0.5 1.0 EVR Favors Favors riskier choice safer choice

Sensory Features: b = 0.58, SE = 0.22, z= 2.64, p = 0.008

Study 2: within-subject n=58

Sensory Features: β =.27, SE = .11, z=2.51, p =.02 Magnitude x SF: β =.63, SE = .17, z=3.66, p =.0002

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & attention

Sensory features, attention & risky choice

- 1. Does attending less to odd and/ or more to the amount promote riskier choice?
- 2. Is this a mechanism whereby sensory features promote risky choice?

	β	SE	Z	р
Study 1: odds	-0.26	0.14	1.95	0.052 .
Study 2: odds	-1.49	0.14	11.01	<0.0005 ***
Study 1: amounts	0.33	0.14	-2.37	0.02 *
Study 2: amounts	0.62	0.17	3.77	0.0001 ***

Fixations predicting risky choice

Sensory features, attention & risky choice

- 1. Does attending less to odd and/ or more to the amount promote riskier choice?
- 2. Is this effect modulated by the sensory features?

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & arousal

Aston Jones & Cohen, 2005

- Gambling associated with increases in arousal (Sharpe 2002)
 - Greater in PG (e.g.Goudriaan et al 2004)
- Gambling cues elicit arousal in gamblers (Baudinet & Blaszczynski 2013)
- Impaired decision making related to aberrant arousal patterns in problem gamblers (Goudriaan et al, 2006)

THE UNIVERSITY OF BRITISH COLUMBIA

Sensory features & arousal

HE UNIVERSITY OF BRITISH COLUMBIA

Individual vulnerability

- ~ 73% of people in BC report having gambled in the past year
- Prevalence of problem gambling 4.9%
- Prevalence of gambling disorder .9%

 Can we identify individuals who are especially susceptible to risk-promoting effects of sensory features?

Individual differences in cue sensitivity: rodents

Sign & Goal Tracking

- Individual variation in attribution of motivational value to reward-predictive cues (Robinson & Flagel 2009; Meyer et al, 2012)
- Linked to addiction vulnerability in animal models
 - Sign-trackers seek drugs and relapse in the presence of discrete drug cues (e.g. Saunders & Robinson 2010, 2011)
 - Goal-trackers more responsive to contextual cues (Saunders & Robinson 2012)

THE UNIVERSITY OF BRITISH COLUMBIA

Individual differences in cue sensitivity: humans

THE UNIVERSITY OF BRITISH COLUMBIA

Cue reactivity of choice

Study 2: n=58

Interim summary

- Sensory features promote risky choice in both rodents and healthy human volunteers
- Attentional mechanisms may be involved
- Risk-promoting effects are more apparent in cue-sensitive individuals
- Sensory features promote arousal

 Independent of the risk-promoting effects

RELEAVANCE TO PROBLEM GAMBLING ?

a place of mind THE UNIVE

Effects of sensory features in problem gamblers

Inclusion / exclusion criteria

- Problem gambling severity index (PGSI, *Ferris* & Wynne, 2001) ≥ 3
- No neurological conditions
- No mental health problems requiring hospitalization
- No change in medication within 6 weeks

	Gamblers	Controls	
n	27	24	
Males	11	9	
Females	16	15	
Age	46.85 ± 11.89	46.21 ± 12.66	
PGSI	11.96 ± 4.4	0	
GD	15	0	
Ψ Meds	14	1	
Gambling tx	11	0	

THE UNIVERSITY OF BRITISH COLUMBIA

Clinical characteristics

Severity

Longitudinal clinical follow-up

Can we predict clinical course from decision making and reactivity to sensory features?

THE UNIVERSITY OF BRITISH COLUMBIA

Heterogeneity of risk attitudes

Conclusions & future directions

- Are problem gamblers more susceptible to the effects of sensory features
- Do these features differentially modulate arousal in problem gamblers?
- How is response to sensory features related to individual differences and clinical heterogeneity in problem gambling?
- How is it related to clinical course?
- What are the neural substrates?

THE UNIVERSITY OF BRITISH COLUMBIA

Acknowledgments

A Jon Stoessl

Michael Barrus

Alaa Akl

Centre for Gambling Research

- Michael Koo •
- Allison Rice
- **Denis Dion** •

PARTICIPANTS!

Game Sense

Luke Clark

Dawn Kennedy

Jason JS Barton

Eve Limbrick-Oldfield

